tag:blogger.com,1999:blog-19798349.post6036843907616852336..comments2017-02-21T06:43:38.854+00:00Comments on open...: Of Open Science and Open Sourceglyn moodyhttps://plus.google.com/100647702320088380533noreply@blogger.comBlogger5125tag:blogger.com,1999:blog-19798349.post-3429830817585476492010-02-12T23:09:47.891+00:002010-02-12T23:09:47.891+00:00thanks for the feedback (both kinds)thanks for the feedback (both kinds)glyn moodyhttp://www.blogger.com/profile/04436885795882611585noreply@blogger.comtag:blogger.com,1999:blog-19798349.post-37115742793880288042010-02-12T23:08:24.936+00:002010-02-12T23:08:24.936+00:00Yes, well said, it's about initially being abl...Yes, well said, it's about initially being able to repeat the initial experiment/analysis. Then to indepently confirm or disprove the underlying hypothesis using other methods or techniques.<br /><br />And you would have to question why the initial scientist would not also provide the software and raw data, equations and results.<br /><br />Allowing the other scientists to confirm his simulation, and to also independently test the hypothesis using his own methods or analysis.<br /><br />You are right to question why scientists would not provide all the relivant data/code for review.<br /><br />If only to confirm the method and technique is repeatable.<br /><br />generally science is quite closed until it's confirmed a discovery is made, this allows that scientist to claim the discovery.<br /><br />Once you published and given the credit for you're discovery, then it moves (or should move) into a very OPEN format, as you suggest.<br /><br />BTW: nice blog, well written.Anonymousnoreply@blogger.comtag:blogger.com,1999:blog-19798349.post-6699819435873649932010-02-12T22:15:14.499+00:002010-02-12T22:15:14.499+00:00I quite agree: the point is, we need the equations...I quite agree: the point is, we need the equations, data *and* software. If any of these is missing, it's not possible to check the working completely.<br /><br />As you say, you also want to use different data sets, and maybe different software and equations, too, but the point is to make any sensible comments about whether the science was done properly you do need the software as well.glyn moodyhttp://www.blogger.com/profile/04436885795882611585noreply@blogger.comtag:blogger.com,1999:blog-19798349.post-15046922906502431502010-02-12T21:54:58.126+00:002010-02-12T21:54:58.126+00:00the "butterfly effect" is the classic ex...the "butterfly effect" is the classic example, and also relates to climate/weather.<br /><br />Two supercomputers were set to perform weather analysis (large scale), the input data for the two supercomputers were changed by a VERY VERY small amount (beat of a butterfly wing). <br /><br />The result of the simulation was that one sim created a cyclone on the other side of the planet and the other did not predict a cyclone.<br /><br />Therefore, "the difference of the beat of a butterfly wing" on the initial data products greatly different results, (with the same software, and computer).<br /><br />I was working a great deal with a professor (emertis) on wind/water interaction (how wind creates waves and swell), we spent years instrumenting a large lake with wind and wave measuring equipment.<br /><br />All to make slightly more accurate ONE SMALL TERM of a complex equation for wind/water interaction. (specifically the shallow water interactions).<br /><br />So again, it's the equations that make for science, not the exact method of achieving the equations. <br /><br />So there is no requirement to get the original developers software, but mearly the equation, which you then confirm with you're own testing and methods. <br />Otherwise you're not really doing science, you're just parroting someone elses work. Which is far less satisfactory, and does not contribute to the scientific knowledge base. <br /><br />Science is about looking at something in a new and different way, and seeing if the underlying principles hold up. And in findiing different methods of proving the underlying theory.<br /><br />If someone gets the same raw data, and the same software then what scientific investigation is he performing, he's not really he is just repeating exactly the same experiment as the first person.<br /><br />This is not how science is done.<br /><br />If the same raw data can be applied to two different analysis methods and it gives essentially the same results then it's a confirmation of the underlying theory. If the same raw data provides a greatly different result with two different methods of analysis, then you can question the analysis technique.<br /><br />But performing the same experiment (exactly) over and over again using the same analysis methods, is what I would call NOT being a scientist at all.Anonymousnoreply@blogger.comtag:blogger.com,1999:blog-19798349.post-22138230178387157542010-02-12T21:54:35.468+00:002010-02-12T21:54:35.468+00:00I dont agree, I dont know if you have worked in R&...I dont agree, I dont know if you have worked in R&D or science industries. But it's not about you're specific techniques. It's about data and equations.<br /><br />As for climate change, it would be far more preferable for the publisher of the results to publish the equation that the software does on the data. <br /><br />This allows independent testing and analysis of the equations, and with the raw data for other groups to apply that equation to their own simulation and analysis.<br /><br />A climate scientist is not necessarily a computer programmer, and to work through a complex program that someone else has written is not what they are good at.<br /><br />But given the equations, and raw data another group of scientists can independantly analyse the equations and method and confirm or disprove the initial findings.<br /><br />The requirement of independently being able to repeat the experiement and confirm the analysis, does not involve getting exactly the same raw data, and feeding it into exactly the same analysis software, and seeing if you get exactly the same result.<br />Ofcourse you will.<br /><br />What is far better, is that the original publisher of the findings, provides the method of analysis, (ie the equations) and provide that data and those equations for other scientists.<br /><br />This happens when the original scientist publishes his results in a peer reviewed journal.<br /><br />Trying to define the method of analysis (the equations) from the code base of the original software would be a nightmare. So it's not normally done that way.<br /><br />Another example, would be in astronomy, complex telescopes require advanced software to collate and analyse the data. but it's the data and the method of gathering the data that is significant, not the software that drives the system.<br /><br />But to have 10,000 scientists doing the same analysis on the same raw data, with the same analysis software will not provide any more information than the first guy who did it.<br /><br />It requires independent testing, that means independent analysis, even if the same underlying equations are employed.Anonymousnoreply@blogger.com